Switch to tabs

This commit is contained in:
Michael Bradley 2025-01-02 00:05:16 +13:00
parent 054b54c291
commit 8bb6ba19d5
Signed by: MichaelBradley
SSH key fingerprint: SHA256:cj/YZ5VT+QOKncqSkx+ibKTIn0Obg7OIzwzl9BL8EO8
5 changed files with 157 additions and 157 deletions

View file

@ -1,7 +1,7 @@
# nbody
Threw this together in a day or two cause I thought it would be fun to mess around with.
Can simulate a few hundred bodies in 2 or 3 dimensions without much hassle (hardware dependent of course).
Threw this together to get more comfortable with Numpy.
Can simulate a few hundred bodies in 2 or 3 dimensions without much hassle.
Comments are non-existent, sorry about that.

152
data.py
View file

@ -6,88 +6,88 @@ import physics
def parse_csv(filename: str, dimensions=2):
if not (1 < dimensions < 4):
raise ValueError(f"Can only show 2or 3 dimensional scenes, not {dimensions}")
with open(filename, 'r') as file:
lines = file.read().strip().splitlines()
pos = np.zeros((len(lines), dimensions))
vel = np.zeros((len(lines), dimensions))
rad = np.zeros((len(lines), 1))
for i, values in enumerate(map(lambda l: map(float, l.split(',')), lines)):
if dimensions == 2:
[x, y, vx, vy, r] = values
pos[i] = [x, y]
vel[i] = [vx, vy]
rad[i] = r
elif dimensions == 3:
[x, y, z, vx, vy, vz, r] = values
pos[i] = [x, y, z]
vel[i] = [vx, vy, vz]
rad[i] = r
return pos, vel, rad
if not (1 < dimensions < 4):
raise ValueError(f"Can only show 2or 3 dimensional scenes, not {dimensions}")
with open(filename, 'r') as file:
lines = file.read().strip().splitlines()
pos = np.zeros((len(lines), dimensions))
vel = np.zeros((len(lines), dimensions))
rad = np.zeros((len(lines), 1))
for i, values in enumerate(map(lambda l: map(float, l.split(',')), lines)):
if dimensions == 2:
[x, y, vx, vy, r] = values
pos[i] = [x, y]
vel[i] = [vx, vy]
rad[i] = r
elif dimensions == 3:
[x, y, z, vx, vy, vz, r] = values
pos[i] = [x, y, z]
vel[i] = [vx, vy, vz]
rad[i] = r
return pos, vel, rad
class Animator:
def __init__(self, pos: np.ndarray, vel: np.ndarray, rad: np.ndarray):
self.pos = pos
self.vel = vel
self.rad = rad
self.mass = np.pi * 4 / 3 * rad ** 3
def __init__(self, pos: np.ndarray, vel: np.ndarray, rad: np.ndarray):
self.pos = pos
self.vel = vel
self.rad = rad
self.mass = np.pi * 4 / 3 * rad ** 3
n, d = self.pos.shape
n, d = self.pos.shape
self.scat: plt.PathCollection = None
self.colours = cm.rainbow(
np.random.random(
(n,)
)
)
self.scat: plt.PathCollection = None
self.colours = cm.rainbow(
np.random.random(
(n,)
)
)
self.fig = plt.figure()
if d == 2:
self.ax = self.fig.add_subplot()
else:
self.ax = self.fig.add_subplot(projection="3d")
self.ani = animation.FuncAnimation(
self.fig,
self.update,
interval=1000 / (15 * 2 ** 4),
init_func=self.setup_plot,
blit=True,
cache_frame_data=False
)
self.fig = plt.figure()
if d == 2:
self.ax = self.fig.add_subplot()
else:
self.ax = self.fig.add_subplot(projection="3d")
self.ani = animation.FuncAnimation(
self.fig,
self.update,
interval=1000 / (15 * 2 ** 4),
init_func=self.setup_plot,
blit=True,
cache_frame_data=False
)
def setup_plot(self):
_n, d = self.pos.shape
if d == 2:
self.scat = self.ax.scatter(
self.pos[:, 0],
self.pos[:, 1],
c=self.colours,
s=self.rad * 10
)
self.ax.axis([-950, 950, -500, 500])
else:
self.scat = self.ax.scatter(
self.pos[:, 0],
self.pos[:, 1],
self.pos[:, 2],
c=self.colours,
s=self.rad * 10,
depthshade=False
)
self.ax.axis([-500, 500, -500, 500, -500, 500])
return self.scat,
def setup_plot(self):
_n, d = self.pos.shape
if d == 2:
self.scat = self.ax.scatter(
self.pos[:, 0],
self.pos[:, 1],
c=self.colours,
s=self.rad * 10
)
self.ax.axis([-950, 950, -500, 500])
else:
self.scat = self.ax.scatter(
self.pos[:, 0],
self.pos[:, 1],
self.pos[:, 2],
c=self.colours,
s=self.rad * 10,
depthshade=False
)
self.ax.axis([-500, 500, -500, 500, -500, 500])
return self.scat,
def update(self, *_args, **_kwargs):
_n, d = self.pos.shape
physics.n_body_matrix(self.pos, self.vel, self.mass, constrain=2.)
self.scat.set_offsets(self.pos[:, :2])
if d == 3:
self.scat.set_3d_properties(self.pos[:, 2], 'z')
self.scat.set_sizes(self.rad[:, 0] * 10)
self.fig.canvas.draw()
return self.scat,
def update(self, *_args, **_kwargs):
_n, d = self.pos.shape
physics.n_body_matrix(self.pos, self.vel, self.mass, constrain=2.)
self.scat.set_offsets(self.pos[:, :2])
if d == 3:
self.scat.set_3d_properties(self.pos[:, 2], 'z')
self.scat.set_sizes(self.rad[:, 0] * 10)
self.fig.canvas.draw()
return self.scat,
def show(self):
plt.show()
def show(self):
plt.show()

View file

@ -4,35 +4,35 @@ from random import uniform, randint
class Args:
width: int
height: int
depth: int
velocity: float
mass: float
count: int
width: int
height: int
depth: int
velocity: float
mass: float
count: int
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="n-body data generator",
description="Generates data for the n-body simulator.",
add_help=False
)
parser = argparse.ArgumentParser(
prog="n-body data generator",
description="Generates data for the n-body simulator.",
add_help=False
)
parser.add_argument("-w", "--width", type=int, default=1900)
parser.add_argument("-h", "--height", type=int, default=1000)
parser.add_argument("-d", "--depth", type=int, default=0)
parser.add_argument("-v", "--velocity", type=float, default=1.)
parser.add_argument("-m", "--mass", type=float, default=1.)
parser.add_argument("-c", "--count", type=int, default=500)
parser.add_argument("-w", "--width", type=int, default=1900)
parser.add_argument("-h", "--height", type=int, default=1000)
parser.add_argument("-d", "--depth", type=int, default=0)
parser.add_argument("-v", "--velocity", type=float, default=1.)
parser.add_argument("-m", "--mass", type=float, default=1.)
parser.add_argument("-c", "--count", type=int, default=500)
args: Args = parser.parse_args()
args: Args = parser.parse_args()
for _ in range(args.count):
print(f"{randint(-args.width // 2, args.width // 2)},"
f"{randint(-args.height // 2, args.height // 2)},"
f"{f'{randint(-args.depth // 2, args.depth // 2)},' if args.depth else ''}"
f"{uniform(-args.velocity, args.velocity)},"
f"{uniform(-args.velocity, args.velocity)},"
f"{f'{uniform(-args.velocity, args.velocity)},' if args.depth else ''}"
f"{uniform(1e-2, args.mass)}")
for _ in range(args.count):
print(f"{randint(-args.width // 2, args.width // 2)},"
f"{randint(-args.height // 2, args.height // 2)},"
f"{f'{randint(-args.depth // 2, args.depth // 2)},' if args.depth else ''}"
f"{uniform(-args.velocity, args.velocity)},"
f"{uniform(-args.velocity, args.velocity)},"
f"{f'{uniform(-args.velocity, args.velocity)},' if args.depth else ''}"
f"{uniform(1e-2, args.mass)}")

60
main.py
View file

@ -7,40 +7,40 @@ import physics
class Args:
filename: str
gravity: float
dimensions: typing.Literal[2, 3]
filename: str
gravity: float
dimensions: typing.Literal[2, 3]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="n-body simulation",
description="Simulating gravitational effects"
)
parser = argparse.ArgumentParser(
prog="n-body simulation",
description="Simulating gravitational effects"
)
parser.add_argument(
"-f",
"--filename",
default="data/2d/simple.csv"
)
parser.add_argument(
"-g",
"--gravity",
type=float,
default=1.
)
parser.add_argument(
"-d",
"--dimensions",
type=int,
choices=[2, 3],
default=2
)
parser.add_argument(
"-f",
"--filename",
default="data/2d/simple.csv"
)
parser.add_argument(
"-g",
"--gravity",
type=float,
default=1.
)
parser.add_argument(
"-d",
"--dimensions",
type=int,
choices=[2, 3],
default=2
)
args: Args = parser.parse_args()
args: Args = parser.parse_args()
physics.G = args.gravity
physics.G = args.gravity
objects = data.parse_csv(args.filename, dimensions=args.dimensions)
a = data.Animator(*objects)
a.show()
objects = data.parse_csv(args.filename, dimensions=args.dimensions)
a = data.Animator(*objects)
a.show()

View file

@ -5,37 +5,37 @@ G = 6.674e-11
def rotations(a: np.ndarray):
a2 = np.concatenate((a, a))
for i in range(1, len(a)):
yield a2[i: i + len(a)]
a2 = np.concatenate((a, a))
for i in range(1, len(a)):
yield a2[i: i + len(a)]
def n_body(pos: np.ndarray, vel: np.ndarray, mass: np.ndarray):
for (o_pos, o_mass) in zip(rotations(pos), rotations(mass)):
dist = o_pos - pos
vel += G * dist * o_mass / (np.linalg.norm(dist, axis=1) ** 3)[:, np.newaxis]
pos += vel
for (o_pos, o_mass) in zip(rotations(pos), rotations(mass)):
dist = o_pos - pos
vel += G * dist * o_mass / (np.linalg.norm(dist, axis=1) ** 3)[:, np.newaxis]
pos += vel
def n_body_matrix(pos: np.ndarray, vel: np.ndarray, mass: np.ndarray, constrain=2.):
n, d = pos.shape
dist = np.zeros((n - 1, n, d))
rot_mass = np.zeros((n - 1, n, 1))
n, d = pos.shape
dist = np.zeros((n - 1, n, d))
rot_mass = np.zeros((n - 1, n, 1))
pos2 = np.concatenate((pos, pos))
mass2 = np.concatenate((mass, mass))
pos2 = np.concatenate((pos, pos))
mass2 = np.concatenate((mass, mass))
for i in range(1, len(pos)):
dist[i - 1] = pos2[i: i + n] - pos
rot_mass[i - 1] = mass2[i: i + n]
for i in range(1, len(pos)):
dist[i - 1] = pos2[i: i + n] - pos
rot_mass[i - 1] = mass2[i: i + n]
norms = np.linalg.norm(dist, axis=2)
if constrain:
norms[norms < constrain] = constrain
norms = np.linalg.norm(dist, axis=2)
if constrain:
norms[norms < constrain] = constrain
vel += G * np.sum(
dist * rot_mass / (norms ** 3)[:, :, np.newaxis],
axis=0
)
vel += G * np.sum(
dist * rot_mass / (norms ** 3)[:, :, np.newaxis],
axis=0
)
pos += vel
pos += vel