Clean up and comment
This commit is contained in:
parent
8bb6ba19d5
commit
6822df0432
5 changed files with 249 additions and 152 deletions
|
@ -3,14 +3,11 @@
|
||||||
Threw this together to get more comfortable with Numpy.
|
Threw this together to get more comfortable with Numpy.
|
||||||
Can simulate a few hundred bodies in 2 or 3 dimensions without much hassle.
|
Can simulate a few hundred bodies in 2 or 3 dimensions without much hassle.
|
||||||
|
|
||||||
Comments are non-existent, sorry about that.
|
|
||||||
|
|
||||||
|
|
||||||
To set up:
|
To set up:
|
||||||
```shell
|
```shell
|
||||||
python -m venv venv
|
python -m venv venv
|
||||||
source venv/bin/activate
|
source venv/bin/activate
|
||||||
pip -r requirements.txt
|
pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
To run:
|
To run:
|
||||||
|
@ -19,7 +16,7 @@ To run:
|
||||||
./main.py -f 2d/simple.csv
|
./main.py -f 2d/simple.csv
|
||||||
|
|
||||||
# 3d simulation, increased gravity
|
# 3d simulation, increased gravity
|
||||||
./main.py -f 3d/some.csv -d 3 -g 30
|
./main.py -f 3d/some.csv -g 30
|
||||||
```
|
```
|
||||||
|
|
||||||
To create a new start state:
|
To create a new start state:
|
||||||
|
|
185
data.py
185
data.py
|
@ -1,93 +1,148 @@
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import matplotlib.animation as animation
|
import matplotlib.animation as animation
|
||||||
import matplotlib.cm as cm
|
import matplotlib.cm as cm
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import physics
|
from matplotlib.collections import PathCollection
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
from physics import n_body_matrix
|
||||||
|
|
||||||
|
|
||||||
def parse_csv(filename: str, dimensions=2):
|
def parse_csv(file: Path) -> tuple[NDArray, NDArray, NDArray]:
|
||||||
if not (1 < dimensions < 4):
|
"""
|
||||||
raise ValueError(f"Can only show 2or 3 dimensional scenes, not {dimensions}")
|
Reads the starting conditions of a simulation from a CSV
|
||||||
with open(filename, 'r') as file:
|
:param file: The CSV file
|
||||||
lines = file.read().strip().splitlines()
|
:return: The position, velocity, and radius matrices, in 2 or 3 dimensions
|
||||||
pos = np.zeros((len(lines), dimensions))
|
"""
|
||||||
vel = np.zeros((len(lines), dimensions))
|
# Get text from file
|
||||||
rad = np.zeros((len(lines), 1))
|
lines = file.read_text().strip().splitlines()
|
||||||
for i, values in enumerate(map(lambda l: map(float, l.split(',')), lines)):
|
field_count = len(lines[0].split(","))
|
||||||
|
if field_count not in (5, 7):
|
||||||
|
raise RuntimeError("CSV format not recognized, can only show scenes in 2 or 3 dimensions")
|
||||||
|
|
||||||
|
# Allocate matrices
|
||||||
|
dimensions = (field_count - 1) // 2
|
||||||
|
pos = np.zeros((len(lines), dimensions), dtype=np.float64)
|
||||||
|
vel = np.zeros((len(lines), dimensions), dtype=np.float64)
|
||||||
|
rad = np.zeros((len(lines), 1), dtype=np.float64)
|
||||||
|
|
||||||
|
# Parse CSV lines
|
||||||
|
for i, line in enumerate(lines):
|
||||||
|
values = tuple(float(field) for field in line.split(","))
|
||||||
if dimensions == 2:
|
if dimensions == 2:
|
||||||
[x, y, vx, vy, r] = values
|
x, y, vx, vy, r = values
|
||||||
pos[i] = [x, y]
|
pos[i] = (x, y)
|
||||||
vel[i] = [vx, vy]
|
vel[i] = (vx, vy)
|
||||||
rad[i] = r
|
rad[i] = r
|
||||||
elif dimensions == 3:
|
elif dimensions == 3:
|
||||||
[x, y, z, vx, vy, vz, r] = values
|
x, y, z, vx, vy, vz, r = values
|
||||||
pos[i] = [x, y, z]
|
pos[i] = (x, y, z)
|
||||||
vel[i] = [vx, vy, vz]
|
vel[i] = (vx, vy, vz)
|
||||||
rad[i] = r
|
rad[i] = r
|
||||||
|
|
||||||
return pos, vel, rad
|
return pos, vel, rad
|
||||||
|
|
||||||
|
|
||||||
class Animator:
|
class Animator:
|
||||||
def __init__(self, pos: np.ndarray, vel: np.ndarray, rad: np.ndarray):
|
"""Runs the simulation and displays it in a plot"""
|
||||||
self.pos = pos
|
def __init__(self, pos: NDArray, vel: NDArray, rad: NDArray, gravity: float) -> None:
|
||||||
self.vel = vel
|
"""
|
||||||
self.rad = rad
|
Sets up the simulation using the given data
|
||||||
self.mass = np.pi * 4 / 3 * rad ** 3
|
:param pos: Start positions of the objects
|
||||||
|
:param vel: Start velocities of the objects
|
||||||
|
:param rad: Radii of the objects
|
||||||
|
:param gravity: Strength of gravity in this simulation
|
||||||
|
"""
|
||||||
|
# We update our arrays in-place, so we'll make out own copies to be safe
|
||||||
|
self._pos = pos.copy()
|
||||||
|
self._vel = vel.copy()
|
||||||
|
self._rad = rad.copy()
|
||||||
|
# Calculate volume of a sphere of this radius
|
||||||
|
self._mass = np.pi * 4 / 3 * rad ** 3
|
||||||
|
|
||||||
n, d = self.pos.shape
|
self._gravity = gravity
|
||||||
|
|
||||||
self.scat: plt.PathCollection = None
|
object_count, dimensions = self._pos.shape
|
||||||
self.colours = cm.rainbow(
|
|
||||||
|
# Objects will be represented using a scatter plot
|
||||||
|
self._scatter_plot: plt.PathCollection | None = None
|
||||||
|
# We'll give each objects a random colour to better differentiate them
|
||||||
|
self._object_colours: NDArray = cm.rainbow(
|
||||||
np.random.random(
|
np.random.random(
|
||||||
(n,)
|
(object_count,)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
self.fig = plt.figure()
|
# Create plot in an appropriate number of dimensions
|
||||||
if d == 2:
|
self._fig = plt.figure()
|
||||||
self.ax = self.fig.add_subplot()
|
if dimensions == 2:
|
||||||
|
self._ax = self._fig.add_subplot()
|
||||||
else:
|
else:
|
||||||
self.ax = self.fig.add_subplot(projection="3d")
|
self._ax = self._fig.add_subplot(projection="3d")
|
||||||
self.ani = animation.FuncAnimation(
|
|
||||||
self.fig,
|
# Set up animation loop
|
||||||
|
# This attribute never gets used again, but we'll keep a reference so that it doesn't get garbage collected
|
||||||
|
self._animation = animation.FuncAnimation(
|
||||||
|
self._fig,
|
||||||
self.update,
|
self.update,
|
||||||
interval=1000 / (15 * 2 ** 4),
|
interval=1000 / (15 * 2 ** 4),
|
||||||
init_func=self.setup_plot,
|
init_func=self.setup_plot,
|
||||||
blit=True,
|
blit=True,
|
||||||
cache_frame_data=False
|
cache_frame_data=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
def setup_plot(self):
|
# Display the animation
|
||||||
_n, d = self.pos.shape
|
|
||||||
if d == 2:
|
|
||||||
self.scat = self.ax.scatter(
|
|
||||||
self.pos[:, 0],
|
|
||||||
self.pos[:, 1],
|
|
||||||
c=self.colours,
|
|
||||||
s=self.rad * 10
|
|
||||||
)
|
|
||||||
self.ax.axis([-950, 950, -500, 500])
|
|
||||||
else:
|
|
||||||
self.scat = self.ax.scatter(
|
|
||||||
self.pos[:, 0],
|
|
||||||
self.pos[:, 1],
|
|
||||||
self.pos[:, 2],
|
|
||||||
c=self.colours,
|
|
||||||
s=self.rad * 10,
|
|
||||||
depthshade=False
|
|
||||||
)
|
|
||||||
self.ax.axis([-500, 500, -500, 500, -500, 500])
|
|
||||||
return self.scat,
|
|
||||||
|
|
||||||
def update(self, *_args, **_kwargs):
|
|
||||||
_n, d = self.pos.shape
|
|
||||||
physics.n_body_matrix(self.pos, self.vel, self.mass, constrain=2.)
|
|
||||||
self.scat.set_offsets(self.pos[:, :2])
|
|
||||||
if d == 3:
|
|
||||||
self.scat.set_3d_properties(self.pos[:, 2], 'z')
|
|
||||||
self.scat.set_sizes(self.rad[:, 0] * 10)
|
|
||||||
self.fig.canvas.draw()
|
|
||||||
return self.scat,
|
|
||||||
|
|
||||||
def show(self):
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
def setup_plot(self) -> tuple[PathCollection]:
|
||||||
|
"""
|
||||||
|
This is a FuncAnimation initialization function in the form matplotlib expects
|
||||||
|
:return: The single scatter plot we're using
|
||||||
|
"""
|
||||||
|
_n, dimensions = self._pos.shape
|
||||||
|
# Set up the scatter plot in 2 or 3 dimensions
|
||||||
|
if dimensions == 2:
|
||||||
|
self._scatter_plot = self._ax.scatter(
|
||||||
|
self._pos[:, 0],
|
||||||
|
self._pos[:, 1],
|
||||||
|
c=self._object_colours,
|
||||||
|
s=self._rad * 10, # To make the objects more visible
|
||||||
|
)
|
||||||
|
# These values work nicely for a landscape window
|
||||||
|
self._ax.axis([-950, 950, -500, 500])
|
||||||
|
else:
|
||||||
|
self._scatter_plot = self._ax.scatter(
|
||||||
|
self._pos[:, 0],
|
||||||
|
self._pos[:, 1],
|
||||||
|
self._pos[:, 2],
|
||||||
|
c=self._object_colours,
|
||||||
|
s=self._rad * 10, # To make the objects more visible
|
||||||
|
depthshade=False, # I find it confusing, YMMV
|
||||||
|
)
|
||||||
|
# These values work nicely for a square window
|
||||||
|
self._ax.axis([-500, 500, -500, 500, -500, 500])
|
||||||
|
return self._scatter_plot,
|
||||||
|
|
||||||
|
def update(self, *_args, **_kwargs) -> tuple[PathCollection]:
|
||||||
|
"""
|
||||||
|
This is a FuncAnimation update function in the form matplotlib expects
|
||||||
|
:arg _args: We don't need any of matplotlib's information for our implementation
|
||||||
|
"arg _kwargs: Again, not necessary for us
|
||||||
|
:return: The single scatter plot we're using
|
||||||
|
"""
|
||||||
|
_n, dimensions = self._pos.shape
|
||||||
|
# Update the state of our simulation
|
||||||
|
n_body_matrix(self._pos, self._vel, self._mass, self._gravity)
|
||||||
|
|
||||||
|
# Set the X and Y values of the objects
|
||||||
|
self._scatter_plot.set_offsets(self._pos[:, :2])
|
||||||
|
if dimensions == 3:
|
||||||
|
# Update the Z value if in 3D
|
||||||
|
self._scatter_plot.set_3d_properties(self._pos[:, 2], 'z')
|
||||||
|
# Use radius to represent mass
|
||||||
|
self._scatter_plot.set_sizes(self._rad[:, 0] * 10)
|
||||||
|
# Redraw the plot
|
||||||
|
self._fig.canvas.draw()
|
||||||
|
return self._scatter_plot,
|
||||||
|
|
78
gen_data.py
78
gen_data.py
|
@ -1,38 +1,62 @@
|
||||||
#!./venv/bin/python
|
#!venv/bin/python
|
||||||
import argparse
|
"""Generates random CSV data to be read by the simulator"""
|
||||||
from random import uniform, randint
|
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from random import uniform
|
||||||
|
from typing import Any, cast
|
||||||
|
|
||||||
|
|
||||||
class Args:
|
class Args:
|
||||||
|
"""
|
||||||
|
The types of the arguments retrieved from the user
|
||||||
|
"""
|
||||||
width: int
|
width: int
|
||||||
height: int
|
length: int
|
||||||
depth: int
|
depth: int
|
||||||
velocity: float
|
speed: float
|
||||||
mass: float
|
radius: float
|
||||||
count: int
|
count: int
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def print_part(data: Any) -> None:
|
||||||
parser = argparse.ArgumentParser(
|
"""
|
||||||
prog="n-body data generator",
|
Prints a CSV field
|
||||||
description="Generates data for the n-body simulator.",
|
:param data: The data to put in the field
|
||||||
add_help=False
|
"""
|
||||||
)
|
print(str(data), end=",")
|
||||||
|
|
||||||
parser.add_argument("-w", "--width", type=int, default=1900)
|
|
||||||
parser.add_argument("-h", "--height", type=int, default=1000)
|
|
||||||
parser.add_argument("-d", "--depth", type=int, default=0)
|
|
||||||
parser.add_argument("-v", "--velocity", type=float, default=1.)
|
|
||||||
parser.add_argument("-m", "--mass", type=float, default=1.)
|
|
||||||
parser.add_argument("-c", "--count", type=int, default=500)
|
|
||||||
|
|
||||||
args: Args = parser.parse_args()
|
|
||||||
|
|
||||||
|
def main(args: Args) -> None:
|
||||||
|
"""
|
||||||
|
Generates the starting data
|
||||||
|
:param args: Parameters for the random generation
|
||||||
|
"""
|
||||||
|
# Print <count> objects
|
||||||
for _ in range(args.count):
|
for _ in range(args.count):
|
||||||
print(f"{randint(-args.width // 2, args.width // 2)},"
|
# Object location
|
||||||
f"{randint(-args.height // 2, args.height // 2)},"
|
print_part(uniform(-args.width / 2, args.width / 2))
|
||||||
f"{f'{randint(-args.depth // 2, args.depth // 2)},' if args.depth else ''}"
|
print_part(uniform(-args.length / 2, args.length / 2))
|
||||||
f"{uniform(-args.velocity, args.velocity)},"
|
if args.depth:
|
||||||
f"{uniform(-args.velocity, args.velocity)},"
|
print_part(uniform(-args.depth / 2, args.depth / 2))
|
||||||
f"{f'{uniform(-args.velocity, args.velocity)},' if args.depth else ''}"
|
|
||||||
f"{uniform(1e-2, args.mass)}")
|
# Object velocity
|
||||||
|
print_part(uniform(-args.speed, args.speed))
|
||||||
|
print_part(uniform(-args.speed, args.speed))
|
||||||
|
if args.depth:
|
||||||
|
print_part(uniform(-args.speed, args.speed))
|
||||||
|
|
||||||
|
# Finish line with a positive radius
|
||||||
|
print(uniform(1e-2, args.radius))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = ArgumentParser(description="Generates data for the n-body simulator", epilog="You should redirect the output to a file")
|
||||||
|
|
||||||
|
parser.add_argument("-w", "--width", type=float, default=1900., help="The width of the spawning area")
|
||||||
|
parser.add_argument("-l", "--length", type=float, default=1000., help="The length of the spawning area")
|
||||||
|
parser.add_argument("-d", "--depth", type=float, default=0., help="The depth of the spawning area, where 0 implies only 2 dimensions")
|
||||||
|
parser.add_argument("-s", "--speed", type=float, default=1., help="The maximum initial starting speed of an object in any dimension")
|
||||||
|
parser.add_argument("-r", "--radius", type=float, default=1., help="The maximum radius of an object")
|
||||||
|
parser.add_argument("-c", "--count", type=int, default=500, help="How many objects to create")
|
||||||
|
|
||||||
|
main(cast(Args, parser.parse_args()))
|
||||||
|
|
52
main.py
52
main.py
|
@ -1,46 +1,26 @@
|
||||||
#!./venv/bin/python
|
#!venv/bin/python
|
||||||
import argparse
|
from argparse import ArgumentParser
|
||||||
import typing
|
from pathlib import Path
|
||||||
|
from typing import cast
|
||||||
|
|
||||||
import data
|
from data import parse_csv, Animator
|
||||||
import physics
|
|
||||||
|
|
||||||
|
|
||||||
class Args:
|
class Args:
|
||||||
filename: str
|
file: Path
|
||||||
gravity: float
|
gravity: float
|
||||||
dimensions: typing.Literal[2, 3]
|
|
||||||
|
|
||||||
|
def main(file: Path, gravity: float) -> None:
|
||||||
|
pos, vel, rad = parse_csv(file)
|
||||||
|
Animator(pos, vel, rad, gravity)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(
|
parser = ArgumentParser(description="Gravitation simulation")
|
||||||
prog="n-body simulation",
|
|
||||||
description="Simulating gravitational effects"
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument("-f", "--file", type=Path, default="data/2d/simple.csv", help="The starting state of the simulation")
|
||||||
"-f",
|
parser.add_argument("-g", "--gravity", type=float, default=1., help="The strength of gravity")
|
||||||
"--filename",
|
|
||||||
default="data/2d/simple.csv"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"-g",
|
|
||||||
"--gravity",
|
|
||||||
type=float,
|
|
||||||
default=1.
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"-d",
|
|
||||||
"--dimensions",
|
|
||||||
type=int,
|
|
||||||
choices=[2, 3],
|
|
||||||
default=2
|
|
||||||
)
|
|
||||||
|
|
||||||
args: Args = parser.parse_args()
|
args = cast(Args, parser.parse_args())
|
||||||
|
main(args.file, args.gravity)
|
||||||
physics.G = args.gravity
|
|
||||||
|
|
||||||
objects = data.parse_csv(args.filename, dimensions=args.dimensions)
|
|
||||||
a = data.Animator(*objects)
|
|
||||||
a.show()
|
|
||||||
|
|
79
physics.py
79
physics.py
|
@ -1,41 +1,82 @@
|
||||||
|
"""
|
||||||
|
Simulation tick algorithms
|
||||||
|
|
||||||
|
Both algorithms cancel out some terms. As you know, the force of gravity is $\frac{G * m_1 * m_2}{r^2}$. However, this
|
||||||
|
force is applied in the direction of the vector between the two masses. Because this direction vector needs to be
|
||||||
|
normalized, we can combine the normalization with the above equation to get $\frac{G * m_1 * m_2 * (p_2 - p_1)}{r^3}$
|
||||||
|
and skip out on a costly square root to calculate $r$ again. Finally, because this force is applied to one of the
|
||||||
|
masses (say $m_1$), the actual change in velocity is the force divided by the mass. This means that we can just drop
|
||||||
|
the $m_1$ term from the equation, and we have our change in velocity.
|
||||||
|
"""
|
||||||
|
from typing import Any, Generator
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
|
||||||
G = 6.674e-11
|
def _rotations(arr: NDArray) -> Generator[NDArray, Any, None]:
|
||||||
|
"""
|
||||||
|
"Rotates" through an array, returning the [i: n+i] range on the ith iteration
|
||||||
|
:param arr: Array to rotate through
|
||||||
|
"""
|
||||||
|
a2 = np.concatenate((arr, arr))
|
||||||
|
for i in range(1, len(arr)):
|
||||||
|
yield a2[i: i + len(arr)]
|
||||||
|
|
||||||
|
|
||||||
def rotations(a: np.ndarray):
|
def n_body(pos: NDArray, vel: NDArray, mass: NDArray, gravity: float) -> None:
|
||||||
a2 = np.concatenate((a, a))
|
"""
|
||||||
for i in range(1, len(a)):
|
Easier-to-understand but slower update algorithm that simulates a tick.
|
||||||
yield a2[i: i + len(a)]
|
Unused, just for demonstration purposes.
|
||||||
|
:param pos: Previous positions
|
||||||
|
:param vel: Previous velocities
|
||||||
def n_body(pos: np.ndarray, vel: np.ndarray, mass: np.ndarray):
|
:param mass: Object masses
|
||||||
for (o_pos, o_mass) in zip(rotations(pos), rotations(mass)):
|
:param gravity: Simulation gravity
|
||||||
dist = o_pos - pos
|
:return: None - updated in-place
|
||||||
vel += G * dist * o_mass / (np.linalg.norm(dist, axis=1) ** 3)[:, np.newaxis]
|
"""
|
||||||
|
for (other_pos, other_mass) in zip(_rotations(pos), _rotations(mass)):
|
||||||
|
# For each combination of 2 objects
|
||||||
|
dist = other_pos - pos
|
||||||
|
# Calculate the force of gravity from the first to the second, and use it to update the velocity
|
||||||
|
vel += gravity * dist * other_mass / (np.linalg.norm(dist, axis=1) ** 3)[:, np.newaxis]
|
||||||
|
# Update positions
|
||||||
pos += vel
|
pos += vel
|
||||||
|
|
||||||
|
|
||||||
def n_body_matrix(pos: np.ndarray, vel: np.ndarray, mass: np.ndarray, constrain=2.):
|
def n_body_matrix(pos: NDArray, vel: NDArray, mass: NDArray, gravity: float, constrain: float = 2.) -> None:
|
||||||
n, d = pos.shape
|
"""
|
||||||
dist = np.zeros((n - 1, n, d))
|
Harder-to-understand but faster update algorithm that simulates a tick.
|
||||||
rot_mass = np.zeros((n - 1, n, 1))
|
Basically does the simpler algorithm all at once using numpy parallelism.
|
||||||
|
:param pos: Previous positions
|
||||||
|
:param vel: Previous velocities
|
||||||
|
:param mass: Object masses
|
||||||
|
:param gravity: Simulation gravity
|
||||||
|
:param constrain: Numerical stability term
|
||||||
|
:return: None - updated in-place
|
||||||
|
"""
|
||||||
|
num_masses, dimensions = pos.shape
|
||||||
|
dist = np.zeros((num_masses - 1, num_masses, dimensions), dtype=np.float64)
|
||||||
|
rot_mass = np.zeros((num_masses - 1, num_masses, 1), dtype=np.float64)
|
||||||
|
|
||||||
pos2 = np.concatenate((pos, pos))
|
pos2 = np.concatenate((pos, pos))
|
||||||
mass2 = np.concatenate((mass, mass))
|
mass2 = np.concatenate((mass, mass))
|
||||||
|
# Generates a matrix using the rotated arrays, like the for loop in the above algorithm in one go
|
||||||
for i in range(1, len(pos)):
|
for i in range(1, len(pos)):
|
||||||
dist[i - 1] = pos2[i: i + n] - pos
|
# The distance between two objects
|
||||||
rot_mass[i - 1] = mass2[i: i + n]
|
dist[i - 1] = pos2[i: i + num_masses] - pos
|
||||||
|
# The mass of the other object
|
||||||
|
rot_mass[i - 1] = mass2[i: i + num_masses]
|
||||||
|
|
||||||
|
# Normalize direction vectors, and ensure the distances aren't too close for numerical stability
|
||||||
norms = np.linalg.norm(dist, axis=2)
|
norms = np.linalg.norm(dist, axis=2)
|
||||||
if constrain:
|
if constrain:
|
||||||
norms[norms < constrain] = constrain
|
norms[norms < constrain] = constrain
|
||||||
|
|
||||||
vel += G * np.sum(
|
# Calculate all changes in velocity at once, using the same method described and implemented above
|
||||||
|
vel += gravity * np.sum(
|
||||||
dist * rot_mass / (norms ** 3)[:, :, np.newaxis],
|
dist * rot_mass / (norms ** 3)[:, :, np.newaxis],
|
||||||
axis=0
|
axis=0
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Update positions
|
||||||
pos += vel
|
pos += vel
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue